

How to use Manatee CAE e-NVH platform without electrical machine geometry?

Manatee features for e-machine integrators

e-NVH CHALLENGES FOR E-MACHINE INTEGRATORS

- <u>Problem</u>: How to ensure e-NVH requirements at system level when there is no access to e-machine design parameters?
- Solutions proposed by Manatee:
 - I. Quick Campbell diagram
 - 2. Airgap flux import
 - 3. Frequency Response Functions
 - 4. Magnetic force import

SOLUTION 1: Quick Campbell diagram

- <u>Problem</u>: How to compare the e-NVH behaviour of different supplier topologies with minimum number of inputs?
- Solution: Quick Campbell feature of Manatee based on topology, slot/pole numbers and speed range
- <u>Outcome</u>: comparison of the frequency signature of different topologies for early e-NVH risk analysis (identification of the presence of low wavenumber forces), prediction of main resonance speeds when position of structural modes are known
- <u>Limitations</u>: no quantification of vibration & noise levels

More information:

https://www.youtube.com/watch?v=Nmbn4ZFKW14

https://www.training.eomys.com/magnetic-force-signature-analysis/147-

signature-analysis.html

2023_01_04 MFSA Magnetic Frequency Signature Analysis documentation

SOLUTION 2: Airgap flux import

- <u>Problem</u>: How to run e-NVH calculations on a third party electric machine without having access to detailed magnetic circuit dimensions?
- Solution: A) import of airgap flux distribution provided by third party + B) definition of an equivalent stator with tuned parameters to fit a known modal basis
- Outcome: possibility to rank e-NVH behaviour of several third party suppliers of electric machines using same modeling assumption + partial troubleshoot of the e-NVH problem + identification of lines exceeding NVH requirements (e.g. -15 dB needed on 6f_e at 3000 RPM)
- <u>Limitations</u>: no possibility to implement noise mitigation techniques

A) INPUT FORMAT (1/2)

- See https://manatee.eomys.com/how-to-get-the-airgap-flux-distribution-from-ansys-maxwell/ for the procedure to export airgap flux density B from Ansys Maxwell
- See Prius_Flux_Import_Var_Speed.zip sent by e-mail for the Excel format
- One Excel file per operating point and per direction (Br, Btheta)
- File name should contain _rad or _tan, and operating point data: _NO=... for the rotation speed (rpm), _Id=... and _Iq=... for the currents (Arms)
- Files should contain as many sheets as there are slices, named Slice=... (number of the slice, starting at 0), _z=... (axial position of the slice, in meters)

A) INPUT FORMAT (2/2)

- First column is the time vector (s), first row is the angular position (rad)
- Angular and time discretisation are up to you, we recommend
- You can export the smallest periodicity in the signal. You need to exclude the last point to avoid numerical errors during the Fourier transforms.

\square	Α	В	С	D
1	time/angle	0	0.00311666	0.00623332
2	0	0.938	0.869	0.806
3	1.8643E-05	0.983	0.902	0.836
4	3.7287E-05	1.035	0.948	0.869
5	5.593E-05	1.076	1.002	0.915
6	7.4574E-05	1.108	1.046	0.97
7	9.3217E-05	1.134	1.079	1.015
8	0.00011186	1.161	1.105	1.047
9	0.0001305	1.18	1.131	1.071
10	0.00014915	1.195	1.152	1.096

Angle (from 0 to angle_max in rad)

Time

(from 0 to t_max)

A) IMPORT INTO MANATEE (1/2)

Angle of the first tooth center (°), in trigonometric direction

Set to periodic to indicate how many periods must be reconstructed to get the signal over a complete

3. Do not forget to save in MLUT folder if preview is OK

2. Preview to check periodicity (cf next slide)

A) IMPORT INTO MANATEE (2/2)

mport flux files as MLUI

Check for every component, slice and OP Check preview m Import_Excel_Flux: Airgap flux density plot Quantity 360° Airgap flux density OP: N0=50 [rpm], Id=-134 [Arms], Iq=106 [Arms] Airgap radial flux density Brad [T] Operating Point (OP) 1. N0=50 [rpm], Id=-134 [Arms], Iq= 26 [Arms] Check nb of minimum & radial Component maximum over one electric Axes Selection period, here p=4 0.5 Axes Operations select slice 0.25 0.50 0.75 Cancel No discontinuity Export Undock flux density plot to check periodicity

Time [s]

Refresh

Auto Refresh

B) DEFINE SIMPLIFIED MACHINE (1/2)

• Edit Toyota_Prius to match your stator design (inner/outer radii, slot depth):

B) DEFINE SIMPLIFIED MACHINE (2/2)

Adjust end-winding length (Lewout) to get correct winding mass:

RUN WF2 TO CHECK NATURAL FREQUENCIES

Adjust stator lamination material density / Young modulus to match breathing mode frequency

RUN WF4 WITH IMPORTED FLUX

SOLUTION 3: Frequency Response Functions

- <u>Problem</u>: How to be sure to fulfil e-NVH requirements at system level when e-motor subsystem excitations are unknown?
- Solution: use of magnetic load case Frequency Response Functions of Manatee applied to a system level FEA mechanical model modal basis
- Outcome: requirements on the levels of each magnetic load type (e.g. torque ripple, pulsating radial forces, etc.) as a function of speed in N/m²(stress) or N (lumped force)
- <u>Limitations</u>: system level FEA model must be built using a concept stator and rotor with main dimensions & masses provided by e-motor supplier